Un modelo predictivo de preeclampsia a partir de datos clínicos y bioquímicos

Haydée Cruz Vadell, Reynaldo López Barroso, Aglae Cáceres Dieguez, Eloy D. Álvarez Guerra

Texto completo:

PDF

Resumen

Introducción: La preeclampsia es uno de los síndromes en mujeres embarazadas que afecta al menos 3 - 8 % de todos los embarazos.

Objetivo: Desarrollar un modelo predictivo de preeclampsia a partir del estado redox en embarazadas, que clasifique a las mujeres pertenecientes a los grupos de gestantes preeclámpticas y gestantes sanas.

Métodos: Se realizó un estudio analítico transversal. Los parámetros bioquímicos y clínicos se evaluaron utilizando el análisis de componentes principales para identificar las variables más influyentes en la aparición de preeclampsia. Los seleccionados como las variables más importantes fueron evaluados por el análisis discriminante lineal de Fisher.

Resultados: El análisis de componentes principales determinó la varianza del set de datos, mostrando la relación con los procesos de peroxidación lipídica, metabolismo de proteínas, daño a tejidos y microangiopático, considerados factores en la fisiopatología de la preeclampsia. Las variables más influyentes fueron usadas para modelar una función discriminante capaz de clasificar gestantes sanas y preeclámpticas. El valor de Lambda de Wilks y el alto autovalor asociado a la función discriminante muestran el poder discriminante del modelo. La ecuación obtenida fue validada con el método Leave one out y reveló un excelente poder clasificatorio del mismo.

Conclusiones: El modelo predictivo puede ser considerado como apropiado para clasificar los casos de preeclampsia, y muestran a los biomarcadores como buenos candidatos para la clasificación y como potenciales indicadores predictivos de preeclampsia.

Enlaces refback

  • No hay ningún enlace refback.